Yapay Zeka, Makine Öğrenmesi ve Veri Bilimi


Kursumuza ön kayıt yaptırmak için bu bağlantıyı kullanabilirsiniz.

# Online Yapay Zeka, Makine Öğrenmesi ve Veri Bilimi Kursu (384 saat)

  • Gözden Geçirme ve Hazırlık

    • Yapay Zeka, Makine Öğrenmesi ve Veri Bilimi İçin Neden Python?
    • Yapay Zeka, Makine Öğrenmesi ve Veri Biiliminde Diğer Programlama Dillerinin Avantajları ve Dezavantajları
    • Python Programlama Dilinin Yeniden Gözden Geçirilmesi
    • Scipy, Numpy, Pandas ve Matplotlib Kütüphanelerinin Yeniden Gözden Geçirilmesi
  • Giriş ve Temel Bilgiler

    • Yapay Zeka Çalışmalarının Tarihsel Gelişimi
    • Yapay Zekanın Alt Alanları
    • Yapay Zekanın Uygulama Alanları
    • Öğrenme Nedir? Makineler Öğrenebilir mi?
    • İnsan Öğrenmesinin Bilinen Süreçleri (Klasik Koşullanma, Edimsel Koşullanma, Bilişsel Öğrenme, Sosyal Bilişsel Öğrenme)
    • Makine Öğrenmesi Nedir?
    • Makine Öğrenmesinin Çeşitleri: Denetimli (Supervised) Öğrenme, Denetimsiz (Unsupervised) Öğrenme ve Pekiştirmeli (Reinforcement) Öğrenme Kavramları
    • Makine Öğrenmesinin Diğer Disiplinlerle İlgisi
    • Makine Öğrenmesi İçin Ne Kadar Matematik ve İstatistik Bilmek Gerekir?
    • Veri Bilimi Nedir?
    • Veri Bilimi ile Yapay Zeka ve Makine Öğrenmesi Arasındaki İlişki
  • Biraz İstatistik

    • İstatistiksel Ölçek Türleri
    • Betimsel (Descriptive) ve Çıkarımsal (Inferential) İstatistik Kavramları
    • Anakütle ve Örneklem Kavramları
    • Olasılıkla İlgili Temel Bilgiler
    • Python’da Betimsel İstatistik İle İlgili İşlemler Yapan Kütüphanelerin Yeniden Gözden Geçirilmesi
    • Rassal Değişken Kavramı
    • Olasılık Dağılımları
    • Çok Karşılaşılan Bazı Sürekli ve Kesikli Dağılımlar
    • Merkezi Limit Teoremi
    • Güven Aralıkları (Confidence Intervals)
    • İstatistiksel Hipotez Testleri Hakkında Temel Bilgiler, Hipotez Testlerinde Kullanılan Kavramlar, Terimler ve Onların Anlamları
  • Verilerin Kullanıma Hazır Hale Getirilmesi Süreci

    • Veri Kümelerinin Dosyalardan Okunması
    • CSV Formatı ve Çeşitli Diyalekleri
    • Veri Kümelerinin Veritabanlarından Okunması
    • Kategorik (Nominal) ve Sıralı (Ordinal) Verilerin Sayısal Biçime Dönüştürülmesi
    • One Hot Encoding Dönüştürmesi
    • Eksik Veriler Üzerinde İşlemler
    • Eksik Verilerin Veri Kümesinden Çıkartılması
    • Eksik Verilerin Doldurulmasına (Imputation) İlişkin Yöntemler
    • Veri Kümesine Yararlı Sütunların Eklenmesi ve Özellik Mühendisliği
    • Verilerin Çoğaltılması (Data Augmentation)
  • Yapay Sinir Ağları

    • İnsanın Sinir Sisteminin Anatomi ve Fizyolojisi İle İlgili Temel Bilgiler (Nöronlar, Nörotransmiter’ler, Sinaps’lar, Reseptörler, …)
    • Öğrenme Beyinde Nasıl Gerçekleşmektedir?
    • Bilgiler Beyinde Nasıl Tutulmaktadır?
    • Duyum ve Algı Kavramları
    • Beynin Bilinenleri ve Bilinmeyenleri
    • Yapay Sinir Ağı Nedir?
    • Yapay Sinir Ağlarının Tarihsel Gelişimi
    • Yapay Sinir Ağlarının Uygulama Alanları
    • Yapay Nöron Modeli
    • Yapay Bir Nöronun Python’da Sınıfsal Temsili
    • Aktivasyon Fonksiyonları ve Nöron Bağlantıları
    • Yapay Sinir Ağlarında Katmanlar
    • Yapay Sinir Ağlarında Yaygın Kullanılan Kütüphaneler ve Framework’ler
    • Yapay Sinir Ağlarında Veri Kümeleri (Eğitim Veri Kümesi, Sınama Veri Kümesi ve Test Veri Kümesi)
    • Keras Kütüphanesinin Kısa Tarihi
    • Keras Kütüphanesinin Kurulumu
    • Yapay Sinir Ağlarının Keras Kütüphanesi İle Yüksek Seviyeli Biçimde Oluşturulması
    • Girdi Katmanlarının, Ara Katmanların ve Çıktı Katmanlarının Oluşturulması
    • Loss Fonksiyonlarının Anlamı ve Çok Kullanılan Loss Fonksiyonları
    • Optimizasyon Algoritmalarının Anlamı ve Çok Kullanılan Optimizasyon Algoritmaları
    • Keras’ta Yapay Sinir Ağı Modelinin Eğitilmesi
    • Epoch ve Batch Kavramları
    • Sınama (Validation) İşleminin Anlamı
    • Test Veri Kümesi ile Yapay Sinir Ağı Modelinin Test Edilmesi
    • Keras Modelinin Dosyalarda Saklanması ve Geri Yüklenmesi
    • Keras’ta Callback Mekanizması
    • Yapay Sinir Ağlarında Özellik Ölçeklemeleri (Feature Scaling)
    • Yapay Sinir Ağlarında “Overfitting” ve “Underfitting” Olguları
    • Kestirim Modeli Olarak Yapay Sinir Ağı Modelleri ile İstatistiksel Regresyon Modelleri Arasındaki Farklılıklar ve Benzerlikler
    • Yapay Sinir Ağlarıyla Sınıflandırma (Lojistik Regresyon) Problemleri
    • Çok Sınıflı (Multinomial) ve Çok Etiketli (Multilabel) Sınıflandırma Modelleri
    • Yapay Sinir Ağlarıyla Lojistik Olmayan Regresyon Modelleri
    • Yapay Sinir Ağlarında Evrişim (Convolution) İşlemleri ve Evrişimsel Sinir Ağları
    • Keras’ta Evrişimsel Sinir Ağları ile İşlemler
    • Evrişimsel Sinir Ağı Modellerinde Nöron Sayılarının Azaltılması (Downsampling)
    • Keras’ta Eğitimin Belli Bir Durumda Sonlandırılması
    • Geri Beslemeli Sinir Ağları (Recurrent Neural Networks)
    • Geri Beslemeli Sinir Ağlarında SimpleRNN, LSTM ve GRU Katmanları
    • Çift Yönlü LSTM Katmanları
    • Geri Beslemeli Sinir Ağlarının Kestirimde Kullanılmaları
    • Geri Beslemeli Sinir Ağlarına İlişkin Örnekler
    • Autoencoder Modelleri
    • Öğrenimin Aktarılması Sürecinin (Transfer Learning) Temelleri
    • Keras Modellerinin Fonksiyonel Olarak Oluşturulması
  • Yapay Sinir Ağları İle Metinler Üzerinde İşlemler

    • Metinler Üzerinde Ön İşlemler (Tokenizing, Stemming, Lemmatization, …)
    • Metinsel Verilerde Word Embedding İşlemleri
    • Metinlerin İçeriğe Göre Sınıflandırılması
    • Metinlerden Anlam Çıkarılması
    • Metinsel İşlemlerde Öğrenimin Aktarılması
  • Yapay Sinir Ağları İle Ses ve Görüntü Verileri Üzerinde Sınıflandırma ve Tanıma İşlemleri

    • Konuşma Kayıtlarına İlişkin Verilerle Çalışma
    • Konuşma Verilerinde Sınıflandırma İşlemleri
    • İşitsel ve Görsel Verilerin Çoğaltılması (Data Augmentation)
    • Yüz Tanıma İşlemleri
    • Resimlerin Sınıflandırılması
    • Hareketli Görüntü Verileri Üzerinde İşlemler
    • Yapay Sinir Ağları İle Resim Tanıma Uygulamaları
    • Renkli Resimler Üzerinde Uygulamalar
    • Resim Tanıma ve Sınıflandırmada Öğrenimin Aktarılması
  • Makine Öğrenmesinde Üretici (Generative) ve Dönüştürücü (Transformer) Modeller

    • Generative Adversarial Ağlar (GANs)
    • Dönüştürücü Ağlar
    • Dönüştürücü Ağların Uygulama Alanları
    • GPT (Generative Pre-trained Transformer) Ağları
    • ChatGPT Uygulamasının Dayandığı Temel, Kullanım Alanları, Sınırlamaları ve Geleceği
    • Metinsel Çıktı Üretimleri
  • TensorFlow Kütüphanesinin Kullanımı

    • TensorFlow kütüphanesinin Tarihsel Gelişimi
    • TensorFlow Kütüphenesinin Kurulumu
    • Tensor Nesnelerinin Oluşturulması ve Tensörler Üzerinde İşlemler
    • Yapay Sinir Ağı Modellerinin TensorFlow’da Oluşturulması
    • TensorFlow’da Yapay Sinir Ağı Örnekleri
  • PyTorch Kütüphanesinin Kullanımı

    • PyTorch Kütüphanesinin Kurulumu
    • PyToch Kütüphanesinin Temel Özellikleri
    • Tensor Nesnelerinin Oluşturulması ve Tensörler Üzerinde İşlemler
    • PyTorch Kütüphanesinde Temel Çalışma Biçimi
    • PyTorch ile Yapay Sinir Ağlarının Oluşturulması
  • Theano Kütüphanesinin Kullanımı

    • Theano Kütüphanesinin Kurulumu
    • Theano Kütüphanesinin Temel Özellikleri
    • Theano Kütüphanesi ile Yapay Sinir Ağlarının Oluşturulması
  • Denetimsiz Öğrenme (Unsupervised Learning)

    • Kümeleme (Clustering) İşlemleri
    • K-Means Kümeleme Algoritması
    • Hiyerarşik Kümeleme Algoritmaları
    • Yoğunkluk Tabanlı DBSCAN ve OPTICS Kümeleme Algoritmaları
    • Kümeleme İşlemlerinde Kullanılan Diğer Önemli Algoritmik Yöntemler
    • Kümeleme Algoritmalarının Çeşitli Bakımlardan Birbirleriyle Karşılaştırılması
  • Biraz Lineer Cebir

    • Vektörler
    • Matrisler ve Determinantlar
    • Matrisler Üzerinde Temel İşlemler
    • Lineer Denklem Sistemlerinin Çözümü
    • Özdeğerler ve Özvektörler
  • Kovaryans ve Korelasyon Kavramları

    • Kovaryans Kavramı
    • Pearson ve Spearman korelasyon katsayıları
    • Python’da Kovaryans ve Korelasyon Hesaplamaları
    • Korelasyon ve Nedensellik
    • Kovaryansın ve Korelasyonun Önemi ve Veri Biliminde Kullanım Alanları
  • İstatistiksel Hipotez Testleri ve Uygulamaları

    • İstatistiksel Hipotez Testlerinin Anlamı ve Uygulama Alanları
    • Parametrik Hipotez Testleri ve Parametrik Olmayan Hipotez Testleri
    • Z Testi ve t Testi
    • F Dağılımı, F İstatistiği ve F Testi
    • Varyans Analizi (Tek Faktörlü ve İki Faktörlü ANOVA)
    • Kovaryans Analizi
    • Kay Kare (Chi Square) Testi
    • Mann Whitney U Testi
    • Doğrulayıcı (Confirmatory) ve Açımlayıcı (Exploratory) Faktör Analizi
    • Yapısal Eşitlik Modellemesi ve Yol Analizi (Path Analysis) Hakkında Temel Bilgiler
  • Veri Tablolarında Boyutsal Özellik İndirgemeleri

    • Boyutsal Özellik İndirgemesi Nedir?
    • Boyutsal Özellik İndirgemelerine Neden Gereksinim Duyulmaktadır?
    • Eksik Değerli Sütunların Atılması (Missing Value Ratio)
    • Düşük Varyans Filtremeleri
    • Yüksek Korelasyon Filtremeleri
    • Geriye Doğru Özellik İndirgemeleri (Backward Feature Elimination)
    • İleriye Doğru Özellik İndirgemeleri (Forward Feature Elimination)
    • Faktör Analizi Yöntemi İle Boyutsal Özellik İndirgemeleri
    • Temel Bileşenler Analizi İle Boyutsal Boyutsal İndirgemeleri
    • Diğer Boyutsal Özellik İndirgeme Yöntemleri Hakkında Temel Bilgiler
  • Anomalilerin Tespit Edilmesi (Anomaly Detection)

    • Anomalilerin Tespit Edilmesi İçin Yaklaşımlar
    • Kümeleme Tabanlı Anomali Tespit Yöntemleri
    • Anomalilerin Tespit Edilmesi İçin Kullanılan Diğer Önemli Yaklaşımlar
  • Sayısal (Nümerik) Analiz İşlemleri

    • Sürekli ve Ayrık Fonksiyonlar
    • Doğrusal Olmayan (Nonlinear) Denklemlerde Kök Bulma
    • Newton-Raphson Yöntemi ile Kök Bulma
    • Türev Kavramı
    • SymPy Kütüphanesi ile Sembolik Türev İşlemleri
    • Sayısal Türev İşlemleri
    • Integral Kavramı
    • SymPy Kütüphanesi ile Sembolik Integral İşlemleri
    • Sayısal İntegral İşlemleri
  • Matematiksel Optimizasyon İşlemleri

    • Maksimizasyon ve Minimizasyon Problemleri
    • Gradient Ascent ve Gradient Descent Algoritmalarının Anlamı
    • Stochastic Gradient Algoritmalar ve Mini Batch Yöntemler
    • Doğrusal Programlama ve Doğrusal Karar Modellerinin Scipy ve Pulp Kütüphaneleri İle Çözümü
    • Doğrusal Olmayan Programlama ve Doğrusal Olmayan Modellerin Çözümü İçin Yaklaşımlar
  • Graflar Üzerinde İşlemler ve Ağ Analizi

    • Graf Veri Yapıları
    • Graflar Üzerinde Optimizasyon Problemlerinin Çözümü (Gezgin Satıcı Problemi, En Kısa Yol Problemi, En Küçük Örten Ağaç Problemi, Hamilton ve Euler Turlu Problemler vs.)
    • Python’da Graf Problemleri İçin Kullanılan Kütüphaneler
    • NetworkX ve python-igraph Kütüphanelerinin Kullanımı
    • Çok Karşılaşılan Graf Algoritmaları (En Kısa Yola Problemi, En Küçük Örten Ağaç Problemi, …)
    • Graflarda Tur (Cycle) Problemleri, Hamilton ve Euler Turlu Problemler
    • Graf Çizimleri İçin Graphwiz Kütüphanesinin Kullanımı
    • Ağ Analizi (Network Analysis) İle İlgili Temel Kavramlar
    • Ağlarda Ölçümleme (Measuring Networks)
    • Ağlarda Benzerlikler
    • Sosyal Ağlar Üzerinde Temel Graf İşlemleri
  • İstatistiksel Yöntemlerle Gerçekleştirilen Regresyon İşlemleri

    • Basit Doğrusal Regresyon
    • Çoklu Doğrusal Regresyon
    • Çoklu Doğrual Regresyonun Önemli Sorunları
    • Çoklu Doğrusal Regresyonda Düzenleme (Regulation) İşlemleri
    • Lasso, Ridge ve Elastic Net Regresyonları
    • Polinomsal Regresyon
    • Scikit-learn Kütüphanesi ile Doğrusal ve Polinomsal Regresyon İşlemleri
    • İstatistiksel Lojistik Regresyon
    • Doğrusal Olarak Ayrıştırılabilirlik (Linear Separability) ve Doğrusal Sınıflandırıcılar (Linear Classifiers)
    • İstatistiksel Lojistik Regresyon Problemlerinin Çözüm Yaklaşımları
    • İstatistiksel Lojistik Regresyon Problemlerinin Gradient Descent Yöntemlerle Çözülmesi
    • Çok Sınıflı Lojistik Regresyon Problemleri
    • Lojistik Regresyon Yöntemlerinin Karşılaştırılması
    • Lojistik Regresyon Modellerinin scikit-learn Kütüphanesi İle Çözümü
  • Destek Vektör Makineleri (Support Vector Machines)

    • Destek Vektör Makinelerinin Dayandığı Matematiksel Temel
    • Destek Vektör Makineleri İle Sınıflandırma İşlemleri
    • Destek Vektör Makineleri İle Lojistik Olmayan Regresyon İşlemleri
    • Destek Vektör Makineleri İle İstatistiksel Regresyon Yöntemlerinin Karşılaştırılması
  • Karar Ağaçları (Decision Trees)

    • Karar Ağaçlarının Dayandığı Matematiksel Temeller
    • Karar Ağaçlarıyla Sınıflandırma İşlemleri
    • Karar Ağaçlarıyla Lojistik Olmayan Regresyon İşlemleri
    • Karar Ağaçlarıyla Diğer Lojistik ve Lojistik Olmayan Regresyon Modellerinin Karşılaştırılması
  • En Yakın Komuşuluk Yöntemiyle ve Naive Bayes Yöntemiyle Sınıflandırma ve Bayes Ağları

    • En Yakın Komşuluk (K-Nearest Neighbours) Yöntemiyle Sınıflandırma
    • Koşullu Olasılık Kavramı ve Bayes Teoremi
    • Naive Bayes Yönteminin Dayandığı Temeller
    • Naive Bayes Yönteminin Varyasyonları (Gaussian Naive Bayes, Multinomial Naive Bayes, Categorical Naive Bayes, …)
    • Naive Bayes Yönteminin scikit-learn Kütüphanesi Kullanılarak Uygulanması
    • Bayes Ağları
    • Bayes Ağlarının Uygulama Alanları
  • Makine Öğrenmesinde Ensemble Yöntemlerin Kullanılması

    • Ensemble Yöntemler Nedir?
    • Boosting Yöntemleri
    • Bagging Yöntemleri
    • Stacking Yöntemleri
    • Rassal Ormanlar (Random Forests)
    • Diğer Ensemble Yöntemler
    • KFold Validation İşleminin Anlamı ve Uygulama Alanları
    • Scikit-learn Kütüphanesi Kullanılarak Ensemble Yöntemlerin Uygulanması
    • XGBoost Kütüphanesinin Kullanımı
  • Otomatik Makine Öğrenmesine (Automated Machine Learning) İlişkin Kütüphanelerin Kullanımı

    • AutoKeras Kütüphanesinin Kullanımı
    • AutoSklearn Kütüphanesinin Kullanımı
    • TPOT Kütüphanesinin Kullanımı
  • Pekiştirmeli Öğrenme (Reinforcement Learning)

    • Pekiştirmeli Öğrenme Nedir?
    • İnsan Öğrenmesinde Edimsel Koşullanma (Operant Conditioning)
    • İnsan Öğrenmesinde Pekiştireçler ve Pekiştirme Tarifeleri
    • Pekiştirmeli Makine Öğrenmesi Nedir?
    • Pekiştirmeli Makine Öğrenmesinin Uygulama Alanları
    • OpenAI GYM Ortamı
    • OpenAI GYM Simülatörlerinin Kullanılması
    • Pekiştirmeli Öğrenmede Kullanılan Algoritmalar
    • Q-Learning Algoritması
    • Q-Learning Algoritması ile GYM Simülatörleri Üzerinde Örnekler
    • Pekiştirmeli Öğrenmede Yapay Sinir Ağlarının Kullanımı
    • Pekiştirmeli Öğrenmede Deep Q-Learning Yöntemleri
  • Pekiştirmeli Öğrenmede Kullanılan Yüksek Seviyeli Kütüphaneler

    • Stable-Baselines Kütüphanesinin Kullanımı
    • Keras-RL Kütüphanesinin Kullanımı
  • Yapay Zeka, Makine Öğrenmesi ve Veri Bilimi İçin Cloud Platformlarının Kullanılması

    • Cloud Platformlarının Özellikleri, Avantajları ve Dezavantajları
    • Makine Öğrenmesi İçin Amazon AWS SageMaker Platformunun Kullanımı
    • Makine Öğrenmesi İçin Microsoft Azure Platformunun Kullanımı
    • Makine Öğrenmesi İçin Google Cloud Platformunun Kullanımı
    • Makine Öğrenmesi İçin IBM Watson Platformunun Kullanımı


Ön Koşul: 
Temel düzeyde Python Programlama Dili bilgisine sahip olmak.

Kurs ücreti duyuru sayfasında belirtilmektedir.

Bu kurs C ve Sistem Programcıları Derneği ve Sistem Bilgisayar işbirliği ile düzenlenmektedir.

Kursumuza ön kayıt yaptırmak için bu bağlantıyı kullanabilirsiniz.